EN K109PT $\begin{aligned} & \text { KISLATED CONVERTER FOR PT100 TEMPERATURE SENSORS } \\ & \text { IS }\end{aligned}$ General Description The K 109 PT converts a a PT100 (EN 60751) temperature ensor signal with a 2,3 or 4
wire connection to a voltage or current signal. Resolution is 14 bit.

 DIN rail, bus-connector power supply option, quick connection by sp
way isolation, and easy configuration in the field using DIP switches.

MIOo0933-E USA ENGLISH - $1 / 8$

Wire Stripping Housing Material: Dimensions, Weight:	8 mm (5/16") PBT Polybutylene terephthalate (black color) $6.2 \times 93.1 \times 102.5 \mathrm{~mm}, 50 \mathrm{~g}$.
Standards:	EN61000-6-4 (electromagnetic emission, industrial environment) EN61000-6-2 (electromagnetic immunity,
	Notes:
	- Use with copper conductors.
	- Use in Polution Degre 2Environment.
	Current power supply a fuse rated max 2.5 A shall be installed in the field.

nstallation
This module has been designed for attachment to a 35 mm DIN 46277 rail. Assembly n vertical position is recommended in order rito increase the module's ventilation, and no
acewas or other objects that compromise a f flow must be eositioned in the vicinity. Do not position the module above equipment that generates heat, we recommend
positioningthemodulu in the lowerpartofthe contro panel or compartment. We
recommend the K-BUS power connector that eliminates the need to connect the positioning the module in the ower parat of the control panel or compartment. We
recoment the K-bus power connector that eliminates the need to connect the power
supply to each module.
supply to each module.

(S)SENECA

MI000933-E USA ENGLISH-2/8

Using the K-BUS

1 - Assemble the K-BUS connectors as required in ord necessary (each K-BUS permits the insertion of two modules).
2 -Insert the K-BUS connectors in the rail by positioning them on the upper side of the rail
 K-BUS. The K -bus must be inserted in the guide with the protruding terminals to the left

\triangleNever connect the power supply directly to the bus connector on the DIIN rail.
Never tap power supply from the bus connector either directly or by using the module's terminals

SETTING THE DIP SWITCHES

Factory settings

All the module DIP switches are at position 0 as the default configuration
This setting corresponds to the following configuration:

PT100 wiring	$\rightarrow 3$ wires
put Filter	\rightarrow present
Output Signal	$\rightarrow 4-20 \mathrm{~mA}$
Measurement Range Start	
Measurement Full-Scale	\rightarrow Towards the top of the output range
Malfunction	

Malturction
Over-Range $\rightarrow \begin{aligned} & \text { YES: a } 2.5 \% \text { over-range value is acceptable; } \\ & \mathrm{a} 5 \% \text { over-range value is considered a malfunction. }\end{aligned}$
This configuration is valid only with all the DIP switches at position 0 .
If one IP swith is moved, it is necessary to set all the other param
Note: for all following table
Note: for lll following tables
The indication \bullet indicates $t h$
The indication indicates that the DP-switchis set in Position 1 (ON),
No indication is provided when the DIP-switch is set in Position (OFF)

(S)SENECA MI000933-E USA ENGLISH - 3/8

SSENECA MIO00933-E USA ENGLISH-4/8

SSENECA
MI000933-E
USA ENGLISH - 5/8

2- Using the K-BUS connector to distribute power to the modules via the DIN rail bus The bus can be powered from any of the modulles, the total power usued by the bus mus
Te less than 40 mA Higher values can damae the be less than 400 mA . Higher values can damage the
fuse mustbe connected in series with the power supply.
3 - Using the K-BUS connector for the distribution of power to the modules via the DIN rail bus connector and the K-SUPPLY Power supply.
The K-SUPLY is a regulated power supply designed to protect the modules
connected to the bus from over-voltagel oads.
The bus conector can be provide with power using the K -SUPPLY module if the total
power consumption of the bus is is less than 1.5 A. Higher values can damage both the ower consumption of the bus is less than 1.5 A. Higher values can damage both the
nodule and the bus. An appropriatly sized fuse must be connected in series with the modulu and the
power supply.

SENECA
M1000933-E
USA ENGLISH-6/8

Input
The module accepts input rom a PT1 100 temperature probe (EN 60751) with a 2,3 or wire connection.
The use of shielded cables is recommended for signal connection
$\frac{2 \text {-wire connection }}{\text { This is the connection }}$
This is the connection to be used for short distances ($<10 \mathrm{~m}$) between module and prob
bearing in mind that it adds an error equivalent to the cable resistance. DIP-switch SW1-1 set in Position 1 (ON) (2/4 wires).
$\frac{3 \text {-wire connection }}{\text { This is the connection }}$
Tiss she connection to be used for medium-I-Ing distances ($>10 \mathrm{~m}$) between module cables. In order for compensation to be cororect, tit is necessaranthat the cenistaction
values of all cables be equal because the instrument measures the resistance of only values of all cables be equal because the instrument measures the resistance of o
one cable and assumes the resistance of the others cables to be exactly the same.
DIP-switch SW1-1 set in Position 0 (OFF) (3 wires).
With bridge between Terminals 3 and 4 .
4-wire connection
This connection should be used for long distancess $(>10 \mathrm{~m})$ between module and probe
Provides the maximum precision because the instrument measures the resistance of Provides the maximum precision because the instrument measures
the sensor independently of the resistance of the connecting cables.
DIP-switch SW1-1 set in Position 1 (ON) (2/4 wires).

$\int_{6}^{5} \text { outrut }$		PT100 4 wire (1)	PT100 3 wire (1)	
7		(3)	(3)	-
	${ }^{4}$			

The PT100 sensor resistance is measured in short pulses to reduce the module power consumption and sensor heating effects. For this reason, some electronic calibrators
are not able to generate the correct simulated signal.

SENECA

MI000933-E
USA ENGLISH - 7/8

Output
Voltage c
Oitage connection - Current connection (applied current)
The use of shielded cables is recommended for signal connections.

Note: in order to reduce the module's heat dissipation, either use the voltage output or
e current output with a load of >250
ED indications on the front

LED	Meaning
Rapid flashing 3 pulses/sec.	Internal malfunction
Slow flashing 1 pulse/sec.	DIP-switch setting error
Steady light	PT100 connection wire

$$
\begin{aligned}
& \text { - } \\
& \text { Disposal of Electrical \& Electronic Equiment (Applicu }
\end{aligned}
$$

